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PREFACE

From a knowledge of the geomagnetic field at the earth's surface
and its chaﬁges with time, we have been able, in recent work, to
determine some aspects of the surface motion of the fluid core of the
earth, where the field originates. In this paper we have further
developed our methods to include some of the fluid mechanics of a rotating
core. As well as improving our fluid velocity determinations, these
methods make possible an estimate of the hitherto unknown electric
current patterns.

This study 1is one of a series intended to add to our understanding
of the magnetic field, including its origin, maintainence, and long-
term changes. The results will make possible improved predictions of
the strength and patterns of the earth's magnetic field as it affects
the radiation belts, and will aid in estimating the magnetic fields
likely to be found on other planets. Other recent publications in this
series include RM-5091-NASA, Estimated Surface Fluid Motions of the
Earth's Core; RM-5192-NASA, Nature of Surface Flow in the Earth's Central
Core; and RM-5193-NASA, Comparison of Estimates of Surface Fluid Motions

of the Earth's Core for Various Epochs.
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ABSTRACT

In earlier papers, the authors derived fluid motions near the surface
of the earth's central core from geomagnetic data, using the frozen-flux
assumption. Another estimate of the poloidal part of the motion was
derived by Rikitake from geomagnetic data using a different method. 1In
the present paper, the general problem of inferring fluid velocities in
the core from magnetic data is discussed and previous results are
compared with one another. The earlier analysis is extended by allowing
for small contributions to secular change from magnetic diffusion, while
constraining the velocity to satisfy a quasi-geostrophic condition.

The latter dynamic condition is derived from first principles, and

allows for electromagnetic forces in addition to the Coriolis force.

The under—determined system of equations is solved by applying a variational
principle which requires nonsingular solutions corresponding to a given
magnetic Reynolds number. Solutions are shown for several values of

the Reynolds number and for the first time include estimates of surface

electrical-current patterns.
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1. TINTRODUCTION

In four previous articles (Vestine and Kahle, 1966; Kahle, Vestine
and Ball, 1967; Kahle, Ball, and Vestine, 1967; and Vestine, Ball,
and Kahle, 1967) the authors have derived approximate descriptions
of fluid motions supposed to take place near the surface of the earth's
core. The basic concept underlying this work was that the lines
of magnetic flux are moved about by the fluid as though frozen into
it, and that the resulting changeé in magnetic induction observed
at the earth's surface can be used to infer the fluid motions.

Rikitake (1967) has also derived core motions from magnetic
data by a different method, wherein one infers the poloidal motions
required to produce, over a long period of time, the observed nondipole
field from an assumed toroidal magnetic field. This method is different
from, and in a sense complementary to, our previous procedure. In
our procedure, both the toroidal and poloidal components of the velocity
were inferred from the (essentially) instantaneous measured values
of the magnetic field and the secular change, with diffusion neglected.
Rikitake utilizes a two-step process in which a poloidal magnetic
field is first generated by the interaction of a toroidal field (assumed
to be of the T; type) with an arbitrary poloidal velocity field,
and then diffuses into the mantle to become the nondipole field.

We may note that Rikitake, when calculating the equilibrium configura-
tion, neglected transport of the poloidal field, whereas in our complementary
approach we neglected diffusion.

It is of considerable interest to see that, despite the differences
between our theory and Rikitake's, his poloidal velocity field is
similar in its main features to our results, as Rikitake has pointed
out (1967). It is conceivable that both theories may be useful,
in the sense that whereas the instantaneous rate of change of magnetic
field at the core surface may be dominated by transport, the time-
averaged or equilibrium properties of the surface field could still
be strongly influenced by diffusion of the field from inside the
core. However, we disagree with Rikitake's contention that transport
of the poloidal field is negligible relative to diffusion and tramsport
of the toroidal field. As we shall show in Section 2, the toroidal



magnetic field cannot contribute directly to the secular change field
(defined as the rate of change of the poloidal magnetic field) at

the surface of or outside the core. This was implicit in our previous
work and also that of Roberts and Scott (1965).

In this paper we generalize our previous theory to include diffusion,
and add dynamical information. 1In doing so, we discuss in more detail
some of the problems encountered in the determination of the core
velocity on the basis of surface measurements.

One aspect of the problem involves the determination of the
values of the electric and magnetic fields at the interface between
the core and the mantle. This is complicated by inaccuracies in
the surface observations of magnetic fields, the absence of data
on electric fields, and the difficulty of extrapolation through a
mantle of uncertain properties. Except for a few remarks, we shall
generally ignore these difficulties by regarding the mantle as nonconductive,
by truncating the spherical-harmonic series for the magnetic field,
and by regarding the electric field as completely unknown.

The other aspect of the problem, to which this paper is mainly
devoted, is the determination of the fluid motion near the core surface
from whatever information we have about field values at the core/mantle
interface. Roberts and Scott (1965) derived a number of results
concerning this problem, and we have also discussed it in our previous
papers. We first extend this discussion to include diffusion in
Section 2.

Roberts and Scott showed that the important field quantities
should be continuous across the thin fluid boundary layer at the
surface of the core. The determination of the surface velocity then
rests upon finding dynamical constraints equal to the number of significant
unknown variables, and the latter number depends upon what assumptions
are made about core conditions. For example, if the electric and
magnetic fields were both known at the core and magnetic diffusion
were assumed negligible, the velocity would be uniquely determined

by the induction equation of hydromagnetism.
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Without the electric-field data, the velocity is not uniquely
determined (Roberts and Scott, 1965; Backus, 1968). This was the
case for our earlier work, although we have argued (Vestine, Ball,
and Kahle, 1967) that the form of the unobservable part of the motion
is limited in such a way that if the magnetic field is sufficiently
complex, one might still be able to determine the broad-scale features
of the velocity pattern. (Unique numerical answers were obtained
by representing the velocity fields in terms of finite series, but
this proves nothing.) Our new results tend to support this argument
for the poloidal component of flow, but not so well for the toroidal
flow (Section 5).

Roberts and Scott also showed that in the absence of diffusion,
an arbitrary secular-change field could not be obtained from a nonsingular
velocity field through induction. They proposed to use this fact
as a means of improving secular-change data (removing uncertainties)
by forcing the data into consistency with a finite velocity field.
However, our results in this and previous papers indicate that the
required discrepancy in secular change is quite large (at least for
the finite series used to represent the velocity). Therefore we
are moved to consider diffusion to explain part of the observed secular
change, especially with regard to the dipole terms.

When diffusion cannot be neglected, additional constraints are
needed to determine the velocity, and in Section 3 we derive a plausible
constraint from the Navier-Stokes equation. However, when both toroidal
and poloidal currents contribute significantly to diffusion, this
still leaves too few conditions for the number of unknowns.

In Section 4 we attempt to resolve the dilemma between the singu-
larity or inconsistency in the equations that occur without diffusion
and the indeterminacy that occurs with diffusion by formulating a
variational principle in which diffusion is minimized. The variational
principle contains the magnetic Reynolds number as an arbitrary parameter,
for different values of which we proceed to solve the equations.

We thus adopt a heuristic approach in which the behavior of the system
(the velocity and current patterns and the fit to secular change)
is observed for a range of Reynolds number, and allow the results

to suggest the most reasonable value.
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2., IMPLICATIONS OF THE INDUCTION EQUATION

In our previous studies, we deduced the velocity at the core
surface from the hydromagnetic induction equation alone, assuming
that diffusion of the magnetic field could be neglected. However,
that procedure had the unsatisfactory feature of solving a formally
indeterminate equation.

Furthermore, there is reason to doubt whether diffusion is as
negligible as previously assumed. We shall therefore reexamine more
carefully what can be deduced from the induction equation, taking
account of the possibility of diffusion.

The electromagnetic theory of the core is based on the standard
equations of hydromagnetism (Elsasser, 1950, 1956), wherein the core
fluid is assumed to be a good conductor obeying an isotropic Ohm's
law and both displacement and charge-convection currents are neglected.

For convenience we begin by recalling the following well-known equations

JT=0E+vxB) (2.1)
>

curl B = 4nl] (2.2)
B = curl A (2.3)

eal g
0
4
-

|

|

(2.4)

where 3 is the currént, E the electric field, ﬁ the magnetic induction
and ¢ aﬁd K are scalar and vector potentials (all in e.m.u.); The con-
ductivity, o, will be assumed uniform in the core. Electric charge
need not be considered explicitly.

Equations (2.1) through (2.4) may be combined to obtain the

"induction" equation

curl ﬁ

iro (2.5)

3x§=-E+3/o=v¢+%§+
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The more familiar ferm of this equation is obtained by taking the curl,
which yields

3B > o 7R
5t - curl(v x B) + e (2.6)

The two terms on the right side of Eq. (2.6) represent the effects
of induction and diffusion, respectively. The order of magnitude of
the ratio of these two terms ie usually characterized -- using a scale

analysis —~- by the magnetic Reynolds number

Rm = 4n0L|3‘ 2.7)

where L is the characteristic length scale. In the core it is usually
assumed that o~ 3 x 10"6 e.m.u., IVI ~ 10 km/year = .03 cm/sec, and
L ~ 1000 km, so Rm- 100. This implies that diffusion can be neglected

for many purposes, and one thereby obtains the "frozen-flux' approxima-

tion

B

>
ryi curl (v x B) (2.8)

which is equivalent to neglecting 3/0 in Eq. (2.5). This is the equation
used in our previous papers.

Returning to the general case, we examine what Eq. (2.5) implies
about the velocity of the fluid. By taking the cross-product of the
radial unit vector ;r with Eq. (2.5), one obtains

- -+
i xJ
+> 1 . oA r
Ve [§Vr+1rx (v¢+at)+ ~ ] (2.9)
At the surface of the core, the normal (radial) cbmponent of the
. ' *
velocity, Vs must vanish. The normal component of B and the tangential
components of V¢ and aK/at must be continuous across the core/mantle

interface (assumed infinitesimally thin), but the tangential components

*

We assume, for simplicity, that the core/mantle surface is spherical,
but the argument does not depend on this. Only the toroidal-poloidal
representation requires this geometry. .
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of the current, 3&, may be discontinuous. To determine v from Eq. (2.9),
it is sufficient to know ¢ and BK/Bt just outside the core and 3& just
inside.

One might, in princiﬁle, determine VT¢ and BK/Bt by making surface
measurements and extrapolating them through the mantle -- except for
the higher-frequency components, which are shielded by the mantle. However,
in practice one lacks sufficient information about either the values
of the electric field at the earth's surface or the precise properties
of the mantle with which to determine ¢. On the other hand, one has
no means of measuring the core surface current 3&, so one can only guess
at its order of magnitude through assumptions about the structure of
the magnetic field in the core, using J = curl f/(4ﬂ). In our previous
studies, we assumed that j is negligible just inside the core (the frozen-
field approximation), whereby the velocity at the core surface is given
by

7 = (Br)_l Er x [Vo + ak/3t] (2.10)

which is just the integrated form of Eq. (2.8).
It should be noted that one expects the tangential velocity immediately
adjacent to the boundary to be zero and to increase to a finite value
inward through a thin fluid boundary layer, as pointed out by Roberts
and Scott (1965). TFor convenience we will refer to the interface of
this boundary layer with the mantle as the "top," and also identify
an imaginary surface in the region where the velocity achieves its mainstream
value as the "bottom" of the boundary layer, as illustrated schematically
in Fig. 1. Now consider the values of the velocity in the mainstream
of the fluid near the bottom of this boundary layer, denoted by 36.
Roberts and Scott argue that B will be unchanged across such a layer
(i.e., continuous in the infinitesimal-layer sense) and that v, will
still be negligible at the bottom. It follows that Vb and 94/3t are
also continuous, so we may write the tangential currents at the top

and bottom of the layer, respectively, as



Solid mantle

Boundary layer

S
- v ~
%' 0 Mainstream T~a

Fig. 1 -- Schematic diagram of Boundary Layer Surfaces, So
deriotes an imaginary surface where velocity achieves
mainstream values, denoted as "bottom'" of boundary
layer. S1 is the core-mantle interface or "top" of

boundary layer.
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3&1 = 0[—VT¢ - (aK/ac)T] (2.11)
ETO = o{—VT¢ - ko), - Brir x 30] (2.12)

which results from taking the cross-product of ir with Eq. 2.9.

Hence the excess current at the top of the boundary layer is

i -3, = t0B 1 x ¥ (2.13)

One might say that this excess current is induced by the field lines
which are dragged through the slower-moving fluid in the boundary
layer. It should be emphasized that when we speak of "'surface current"
in Section 4, we shall mean ET , the current at the outer part of
the mainstream, rather than thg strict surface wvalue jT .

Since the frozen-flux approximation refers to the mainstream
of the fluid, one therefore assumes that JT is negligible in this
case. Although JTl is not necessarily small its effect will be
negligible for a thin boundary layer. Equation (2.10) is still appropriate
if one understands the velocity to mean 30. The consequence of this
argument 1s that the boundary layer may be simply ignored if it is
as thin as Roberts and Scott have argued. One simply allows the
fluid to slip as if frictionless. We shall discuss the thickness
further in the next section.

Equation (2.10) contalns a singularity on those curves for which
Br vanishes, unless the numerator also vanishes thereon. Roberts
and Scott discussed this singularity (in other terms) and showed
that it implies a constraint on the secular-change field, aK/at.
They proposed to use this constraint to improve the data on secular
change. However, we shall show below that the diffusion or current
term is not so obviously negligible, a result which impliés that
the errors in secular-change data that these workers propose to correct

might instead be attributed to a toroidal surface current.



-9-

To clarify the field relationships, we can express the solenoidal
velocity and magnetic vectors in terms of toroidal and poloidal fields
(Elsasser, 1956). Let

> _ Sy L Sy P2 By
v = - curl (irx) curl curl (iru) ir x Uy + irVTu VT (Br) (2.14)
Kzer-irvas+vg (2.15)
B = curl (irT) 4+ curl curl (irS)
(2.16)
N 2 98
==-i XVTT_iVTS+V(8r)
x 1| s 2 a7\ | * 2. . a%s
= (4m) -1 Vol + ¥, (5;)+1rvav s+ar2 (2.17)
*
where we have used tangential operators defined by
169 i) 3
VT “r 23 + r sin 6 23X (2.18)
2 . 1 ] ( 9 ) 1 3
Ve £ —————— [sin 8 —] + — 2.19)
rZ sin 6 3990 36 sin 6 BAZ

(The scalars T and x determine the toroidal components or stream functions
of the magnetic and velocity fields, while S and u determine the poloidal

components. These roles are reversed for the L and ¥ fields, wherein

*
Some useful identities fer these operaters are: V.VT = VT VT %;
VT.V = V% + 2/r 3/9r; curl (i F) = ir x VTF, curl curl (irF) = - curl

2 s 2 2_,. 2 )
(1r x V. F) -1rVTF + 9 (3F/3r) = - 1 _(VoF + 3°F/ar”) + V(3¥/ar); curl

~

(VTF) = - curl (1r aF/ar) = ir x VT (3F/31); VTfir's 2/r. .
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T determines the poloidal and S the toroidal components.) The scalar
g€ is of no physical significance and is determined by the choice of
gauge; for example, the condition V.K = 0 implies that

Ve = - v = -1 (I (2.20)

2]

In terms of the poloidal-toroidal representation, and using the

fact that Vo = 0, we can write the velocity at the surface So as

@)Y Lli V¢+§§-+3/o
r r at o

<V

= -1 J3 9 38
R R (? * at) * VT(Bt) (2.21)
V.S
T
1 A“ T 2 BZS
t e |t X Vr (3?) =Yy (VTS + )

It is obvious that we can always eliminate the singularity (at

B = - VZS = 0) by appropriate choices of the (unknown) functions

8;/3r ang 328/3r2. In particular, diffusion of poloidal lines of
force, characterized by (V%S + BZS/BrZ), is equivalent to an adjustment
in the secular change, 3S/9t, as we stated above.

One can also show that the secular change is independent of the
toroidal magnetic field. Consider the radial component of the differ-
ential form of the induction equation, which can be derived by

multiplying Eq. (2.21) by V%S and taking the tangential divergence:

9B 2
r _ 2 {38\ _ > 2. 1 22 3°s
% - Vr (’E) - VT‘(VOVTS) hno T (VTS + arz) (2.22)

Obviously the toroidal field has no direct effect on secular change
through either transport or diffusion. What occurs is a two-step

process, like that used by Rikitake (1967), in which the toroidal
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field deeper in the core is distorted by inductive motions into
poloidal field, which can then penetrate the surface only by diffusion.
In this context no explicit assumption need be made about the toroidal
field, although we expect from the low ratio of mantle-to-core conductivity
(estimated at about: 10—3) that Jr will be negligible at the boundary.
This implies that T, ~ 0, although 9T/3r may be substantial.

It was pointed out to the authors by Mr. Arthur Richmond that
diffusion might reasonably be expected to have a substantial effect
on secular change, in contrast to the conclusion based upon the magnetic-
Reynolds-number argument. The explanation for this paradox is that
at the surface of the core, only the weak poloidal field can contribute
to the induction term, whereas the diffusion term is affected by
the much stronger poloidal magnetic field which may exist somewhat
deeper in the core (see below). To state it another way, one sees
from Eq. (2.22) that the length scale which characterizes the induction
term is the horizontal scale, whereas the vertical length scale --
which might be much shorter -- is involved in the diffusion term.
This situation requires that the actual or "effective' Reynolds number
at the core surface be defined by a more careful scale analysis.

We can define a specific number ﬁm in terms of root-mean-square

values (denoted by'<: ;>rms) of the terms in Eq. (2.22) as

R (2.23)

m

+ _2 2
— 4mo {r.(VOVTS)> rms 4o V LR 9
R = ~ LR/LH

m - /2[ 2 2 2 YL
<VT(VTS + 3°8/ar )>ms 34

where we assume that the standard Rmis defined by a length scale

of the order Ly (LH and LR denote horizontal and radial length scales).
Thus R could be of order ome if Ly ~ LH/lO. This situation is
plausible if one considers that coupling of fields by fluid motions
deeper in the core could result in poloidal field derivatives comparable
to those of the toroidal field; 1.e (see Eq. 2.16),**

*
At a reasonably high Reynolds number, R , the motion can create very

large poloidal fields from toroidal fields,mbr vice versa. The ultimate
ratio depends upon the dynamical situation, and therefore takes one into
dynamo theory.
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325/ar% ~ aT/or (2.24)
Since the toroidal field deeper in the core (BT) may be larger than the
surface poloidal field (Bi),* Eq. (2.24) implies that the poloidal field

has a small vertical length scale viz.

P

2
2 2 or H “R
L or
R
or
B(P)
(LR/LH) N’;T (2.25)

To summarize the situation, we suggest that the vertical length
scale of the magnetic field in the outer part of the core may be smaller
than the horizontal scale or the typical length scale deeper in the
core. The latter stipulation is necessary because the typical magnetic
Reynolds number for most of the core must be large to have an efficient
dynamo.

The possibility of a small ﬁm at the surface 1is also suggested
by our previous results for the core velocity [e.g., Table 4 (Vestine
et al., 1967)], wherein we always found a large discrepancy in the
fit to the dipole terms; i.e., between the measured values of the
spherical harmonic coefficients gi and ﬁi, and the values calculated
from our derived velocity field, ér = - VT.(Brzé). A typical result
was (for epoch 1960): é; (measured) = 20.3 y/year and g; (calculated)
= 5,3 y/year. This discrepancy could be explained by a toroidal surface

current of the form

= c(lSy/yr.)a3/b ir x VT(cos 8) (2.26)

*Strong toroidal magnetic fields are required in most dynamo theories
(Bullard and Gellman, 1954; Elsasser, 1956; Braginskiy, 1967).
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(a and b are the radii of earth's outer surface and core, respectively).
But this current implies, according to Eq. (2.17), a decrease of the
dipole component with depth given by

20 o
dgy g
5~ (2.27)

dr LR

4o (15v/yr.) =

The implied vertical length scale is therefore about LR = 400 km
for 0 = 3 x 10-6 e.m.u. From another point of view, the fraction
of change in ég associated with diffusion implies a characteristic
time of decay for the dipole field of 1 = gi/g; = 2000 years, which
is close to the historically observed decay rate. This result is
consistent with a picture in which the main dipole field of the earth
is, at present, generated by freely decaying currents in the outer
400 km or so of the core (depending on the conductivity) superimposed
on smaller motion-induced currents that make no long-term contribution
to the dipole.

Although it is conceivable that this discrepancy (the inability
to represent the observed secular change by induction) is due to the
finite velocity representation (only terms up to n = m = 4 in the
spherical harmonic coefficients can be handled), numerical experiments
indicate that this is not the primary problem. It appears that the
fundamental censtraint [the singularity of Eq. (2.10) at Br = (0] cited
by Roberts and Scott is the real problem~-an arbitrary secular change
cannot be obtained from a given main field through induction by a
nensingular velocity field., Furthermore, since the disérepancy is
large for the well-determined dipole terms, it seems unlikely that
it could be attributed to errors in the data--unless there is a strong
coupling, via the motion, to higher-order, poorly determined terms
in the magnetic field.

To summarize, we see that the induction equation permits one
to infer the core surface velocity if both electric and magnetic fiéld
data are available and if the current can be neglected. However,
since electric-field data are not available, and there is evidence
that the current is not completely negligible, additional information

is needed.
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3. FLUID-DYNAMICAL CONSTRAINT

We have so far used the magnetic induction equation, which describes
the effect of motions on the magnetic field. To obtain further information,
we turn to the equation for the dynamics of the fluid, the Navier-

Stokes equation. In the rotating frame of reference of the earth,
*
this equation can be written
a+ -> > > > -> <> >
p[s% + (v.VVH 2 x v+ 2 x (@ x7T)
(3.1)
=—Vp+3x§—pv¢g+pvv2$

where § is the angular velocity of the earth, p the fluid density,
p the pressure, ég the gravitational potential, and v the kinematic
viscosity.

The important feature of this equation for large-scale core
motions, as in meteorology, is the very small magnitude of the inertial
terms relative to that of the forces, except for the Coriolis term
(Elsasser, 1956); i.e., the a priori assumption of small accelerations
requires a balancing of forces.** This balance gives us an important
constraint on the unknown variables.

In addition to neglecting the inertial terms, we may further simplify
Eq. (3.1) by taking account of the presumably small compressibility
of the core fluid. Let

p(T,t) = o [1 + (T,0)] (3.2)

*We shall not take account of the precessional motion or torques
discussed by Malkus (1963), since the average value (over one daily
rotation) of these forces will not contribute to the final result
we derive in this section.

k% -
The inertial terms 8;/3; and (3.v)3 are about 10 3 times the
Coriolis terms for the scales assumed in Section 2.
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where I is constant and € << 1. Reasonable estimates of ¢ are

sufficiently small that we can assume

divv =0 (3.3)

and further neglect e in all terms of Eq. (3.1) except the large gravita-
tional term (Boussinesq approximation). One can also rewrite 3 x (§ x ;) as

-1/2 Vlﬁ x ¥‘2’ and include it in an effective gravitational potential

o =0 - 1/2]d x |2 (3.4)

With these simplifications, the approximate form of the Navier-Stokes
equation for the core can be written (Elsasser, 1956; Hide and Roberts,
1961)

Lna (3.5)

W xv=-vp+TxBlo - evo+ v
where P = p/p0 + ¢, The viscous drag term, vvzz, is important only in
the boundary layer. The Lorentz force, 3 x ﬁ, is generally about
0.1/1_{m times the Coriolis term. Thus one expects that it may be sig-
nificant in limited areas of the core surface ——- where J and B are larger
than average and v small -- if ﬁm is near one; i.e., if diffusion is
important in the induction equation.

It should be noted that Eq. (3.5) has been derived on the assumption
of quasi-steady motions of the fluid. It is possible that there exist
turbulent or wave-like motions which have much shorter time or length
scales (Malkus, 1963; Hide, 1966). Such motions would presumably not
be observable at the surface of the earth, since high-frequency
components of secular change are shielded by the mantle. A possible
difficulty is that these motions might be coupled to the observable
(large-scale) motions by the nonlinear terms in the equation of motion
and in the induction equation. However, to couple effectively, the
turbulent motions must have wave numbers and frequencies whose sums
or differences are comparable with the motions under study, and the

interaction must proceed unidirectionally over a long period of time.
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The effect might then require an alteration of the equations of motion
for the observable motions in such a way that they would differ from
Eq. (3.1). Coupling might lead to frictional effects such as those
found in atmospheric problems in the "eddy viscosity" or Reynolds
stress. It should therefore be understood that Eq. (3.5) neglects
turbulent effects, except as they may be included in the viscosity
coefficlent v.

The significance of a fluid boundary layer at the core/mantle
interface has been discussed by Roberts and Scott (1965) (as mentioned
in Section 2), who based their conclusions upon work of Stewartson
(1957, 1960a,b). Although we are in general agreement with them about
the significance of the boundary, we believe that their conclusions
on the detailed structure of the boundary are susceptible of improvement.
In particular, the result of Stewartson's which appears to have been
used (1960a) did not include the Coriolis effect, and further assumed
an equilibrium between induction and diffusion in the boundary layer
for which Bﬁlat = 0, It therefore appears desirable to examine the
structure of the boundary layer under more appropriate assumptions.

In the Appendix, we derive an approximate solution of Eq. (3.5)
which gives the radial dependence of the variables in the boundary
layer. The main assumption is that the thickness of the layer is
much less than the horizontal scale length. The general expression

found for the fluid velocity in the core, Eq. (A.28), is

v(r,0,1) = 1 v (r,8,))

+ VMT(r,B,A) {1 - exp[(r - b)/8] cos [kb(b - r)]} (3.6)

~

\
+1_x Vyp(x:652) expl(r - b)/8] sin [k (b - r>1(|§3§ gl)
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where

ko = ¥Qfv £(8,2)
§ = Vv/Q £(6,1)/|cos 9[

£(8,1) = +\J(Yo +-/y§ + cosze (3.7

oB2/(29_)

{18}

Yo

and where v, must vanish at r = b and VMT is arbitrary, except that

these quantities must satisfy V'z = 0 and are assumed to vary only slowly across
the boundary layer (i.e., v. is zero at S0 as well as at Sl)' The

velocity at the surface So’ as discussed in Section 2, is understood

to be

v (8,1) = v(b - £,8,A) = Vyyp(B>052) (3.8)

where € > § is some depth greater than the boundary-layer thickness,
but small relative to mainstream scale lengths.
The nominal width of the boundary layer, §, is given approximately,

for the case of Y, << lcos 9| and v = 103 cm2/sec, by

v 3.7 x 107

Qjcos 8| /TEEE—ET—

[
R

(3.9)

which is the usual Ekman boundary layer, well known in ordinary fluid
mechanics. However, sufficiently close to the eduator, Eq. (3.7)

approximates to
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§ = Vpo 105 cm

~

0B2 IBrl
r

(3.10)

The last result is precisely that given by Roberts and Scott, and
is due to the fact that the Coriolis force term they neglected as a
matter of convenience wvanishes at the equator. Hence we see that except
at the equator the boundary layer is generally thinner than that
found by Roberts and Scott, a result which strengthens their conclusion
that the magnetic field is continuous across this layer. [This conclusion
is examined in the Appendix, Egqs. (A.26) and (A.27).]

Focusing attention on the variables at the surface of the mainstream
of the core (So in Fig. 1), we see that the fluid equations, consisting
of Eqs. (A.3) and (A.12), may be summarized as

J B
T - gVd (3.11)

v =20 (3.12)

We also found [see Appendix, Eq. (A.13)] that the assumption of
negligible mantle conductivity implies that (at So)
Jor =0 (3.13)

If the surface of the core is an equipotential of the effective

gravitational potential ¢, then at this surface

Ve =1¢e (3.14)

~

%

where in is the normal to the core surface. Hence we can eliminate
the gravitational term from Eq. (3.5) by taking its cross—product
with in. If the

*Small deviations of the normal vector from the gravity plumb line
might result in large tangential forces. By excluding such deviations,
the present theory ignores the possibility of "bumps" on the lower
mantle surface, such as those discussed by Kern [1965].
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core surface is a smooth spheroid, it is sufficiently accurate for the
geometrical analysis to take in== ir; i.e., to neglect the small
aspherical effects. (This was already assumed in the electromagnetic

theory.) Thus

=N
X
—
S
X
<
Tonwnnad
]

= -29Q cos 8§ 3
o
(3.15)
N >
= -ir X VTP + (Br/po)Jo
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4., SURFACE FLOW ANALYSIS

The complete equations for the surface flow consist of Egs. (2.12)

and (3.15), together with Eqs. (3.12) and (3.13), which can be summarized
as

> ~ ° ~ -
Jo = 0[}VT¢ + ir X VTS - Brir x Vo] (4.1)
and

> I >
v cos g = ir x VTP/(ZQ) - Br Jo/(Zon) (4.2)

We can eliminate 30 between these equations (and also eliminate

~

<> -+
i x v_in terms of v ) to obtain
r o o

1

- . -
v = ——7—— |lcos 8 i x VP -y V (29)
0 (c0829 + Yg) [( r T ) le/

(4.3)

~ . 2 ~ .
+ (cos 6 Yo/Br)(VT¢ - ir X VTS) + (yo/Br)(ir x VT¢ + VTSi]

where

_ 2
v, = 082/ (200 ) (4.4)

Resubstitution of 30 into Eq. (4.1) gives

> ~ [ 2
Jo -( 5 2) [(.—VT¢ + 1r x VTS) cos 9

(4.5)

B
r

Y, cos 6(1r x VT¢ + VTS) +(§§)(cos 0 VTP + Yoir x VTP{]



2]~

It is noteworthy that 3o.and 3; have finite limits when either
cos 8 =0 or Br = 0 (but not both); for example,

A

ir % VT¢ + V.5 p V. P

Lim ¥ = T el (4.6)
o B BZ
9'*71'/2 r or
and
i x V. P
> r T :
Lim Vo T 20 cosb (4.7)
B »0
T

Hence the expressions (4.3) and (4.5) have only a finite number of
isolated singular points -~ the intersections of the geographic equator
with the curves Br = 0. It should be possible to remove these singular-
ities by proper choices of the functions ¢ and P. By contrast, the

frozen-flux equation, (2.10), has a singularity on the entire curve

B_ = 0.
Equations (4.3) and (4.5) involve the two unknown functions ¢

and P, so 30 is still essentially undermined. However, if the effective
magnetic Reynolds number ﬁm defined in Eq. (2.23) is large, then 30
must be small, and in the limit jo = 0, Eq. (4.7) implies that

. . BYV.P
—VT¢ + 1r X VTS + 20 cos 0 = ( (4.8)
which implies from Eq. (4.5) that
ir x VTP

-
Yo T m cos 9 (4.9)
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oY
ix Vg + VS

o = B
r

v (4.10)
Equations (4.9) and (4.10) are respectively the geostrophic condition

and the frozen-flux approximation. Taken together [i.e., Eq. (4.8)1],

they provide sufficient information to determine all quantities, but the

form of the equations is such that they do not always possess a simultaneous

solution -- even if Eq. (4.10) were nonsingular by itself. This follows

from the fact that the quantities ir X VTP and ir X VT¢ are toroidal

L *
vectors, whereas the given quantity V. S is a poloidal vector. For

example, if B_ were proportional to cgs 8 (dipole field), VTé could not
be different from zero. Hence the simultaneous satisfaction of Egs.
(4.11) and (4.12) for arbitrary Br and ﬁr is a much more severe constraint
than the singularity discussed by Roberts and Scott (1965).

We have found that the data are apparently not perfectly consistent
with this constraint; thus either one must have a nonzero current or else
the fluid dynamical approximations we have made in deriving Eq. (4.2)
are incorrect. (The third possibility, errors in the data, can also be
represented as nonzero current, as discussed in Section 2.)

The point of view we should like to adopt is to regard the fluid-
dynamic constraint, Eq. (4.2), as correct and the electric
current as small but not entirely negligible. This would be the case if
im were moderately large, say of the order of 10. We shall seek an approxi-
mate solution for the system for which the velocity is nonsingular
and which corresponds to the least value of 30. This condition may

be expressed mathematically by specifying that the integral

]
HH

J J |3$|2ds (4.11)

over the surface of the core be a minimum, where ¢ and P are treated

B
as independent variables and v, is required to be nonsingular (in some

*

Poloidal and toroidal vectors on a spherical surface are linearly
independent. They are orthogonal in the sense that the surface integral
of their inner product vanishes identically.
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sense) as anauxiliary condition. To make this condition explicit, we

*
shall specify that
JJ |$0|2ds = constant < « (4.12)

Assuming the constant in Eq. (4.12) is not varied, we can combine Egs.
(4.11) and (4.12)’by Lagrange's method of multipliers to obtain the

variational principle

8T

8 ” [}’50]2 + A mpoo]}?olz)] ds (4.13)

where the factor Zono has been used to render the multiplier A dimension-
less. Since the constant in Eq. (4.12) has not been specified, the
multiplier A cannot be determined from the variational principle. It
is, at the outset, a free parameter related to the effective Reynolds
number ﬁm.

The Euler-Lagrange equations which are obtained from Eq. (4.13) by

varying ¢ and P are

>
VT-X =0 (4.14)
and
>
VT'Y =0 (4.15)

*

Although the specification of a bounded integral is not mathematically
equivalent to a nonsingular velocity field, it is a more convenient
analytical formulation and will suffice to provide the desired result
in terms of the numerical methods used here.



-24-

where
% = | (cos?s + 0y ) (v ?xvé+—]-311\7 v V. P
= cos ' T¢ -1 - ) 50 ( i x TP - cos 8 T )
x (Yz + cosze)_l (4.16)
and

> ’: . . ”
Y = [Br cos B (1r X VTS - VT¢) -~ ABr(VTS + ir X VT¢) + (polc)(A + YO)VT%
x (v2 + cos?e)™ (4.17)

Integration of these equations gives the solutions

% N 2
X (ZQpOA/o) curl (irU) - (ZonA/G)lr x V_U (4.18)

T

i

¥
n

(ZﬂpoA/G) curl (irV)

1)

- (ZonA/a)ir x V.V (4.19)

where U and V are arbitrary functions on the core surface (a constant
factor ZonA/c has been inserted for later convenience).

We can solve Eqs. (4.16) and (4.17) to obtain P and ¢ in terms of
U, V, S and Br:

~

1r T T

x VP = 20B (cos 6 Vv
r T

U+ Air x Vv U) + Zﬂ(cosze + YOA) VTV (4.20)

~

" L ] 2 ~
L% Vb + 9,8 = (Br + znpoA/o) VU + B ( cos 6 VoV - AL x VT\)

(4.21)

Using Eqs. (4.20), (4.21), (4.3), and (4.5), we obtain expressions

>
for v. and } :
0 o
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<44
1

BrV U+ cos 8§ V.V (4.22)

T T

EY
J
o]

A (oBrVT

V o+ 200 1 x VTU) (4.23)

We can also obtain differential equations for U and V by eliminating
P and ¢ from Eqs. (4.20) and (4.21) by operating with the tangential

divergence:

V.r(1_ x v_P)
T 'r T _ 2
50 0= Br cos 8 VTU + VTBr (cos 8 V

TU + Alr x VTU)

B sin 8
T

2 2 2 sin 6 cos 9§
- = VeU + (cos 8 + yoA)VTV - - VeV
oBrA
+ oy VrBr-VTV (4.24)
o
Voo (1. x V.0 + v.8) = v2§ = B
T . T T T - r
= (B2 + 2Qp A/U)VZU + 2B V.B -V U
r o] T r Tr T
+ VTBr- (cos 6 VTV - Air X VTV)
B (4.25)
- Isdn® gy i cos 8 vV
r 6 r T

Equations (4.24) and (4.25) are restatements of the fluid-dynamical
constraint, (4.2), and the induction equation, (4.1), respectively, in
terms of the functions U and V and the parameter A. The variational
principle has therefore eliminated the indeterminacy (by effectively
adding two new conditions) and has led to expressions which are inherently
nonsingular. The remaining task is to choose A and to solve Egs. (4.24)

and (4.25) in terms of known values of Br and ér’
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We have pursued a heuristic approach by solving the equations for
several different values of A and examining how the solutions vary with
A. Equation (4.23) indicates that 30 is explicitly proportional to A
(ignoring the implicit dependence of U and V on A), so one expects ﬁm
to be approximately inversely proportional to A. We have solved Egs.
(4.24) and (4.25) simultaneously by least squares numerical approximation
for several values of A, corresponding to Reynolds numbers (ﬁm) between
20 and about one.

The method of solution of tﬁe equations is similar to that used in
our earlier papers (Kahle, Vestine, and Ball, 1967), involving extrapolation
of main geomagnetic field and secular change data for epoch 1960 (Cain
et al., 1967) to the core. Spherical harmonic expansions of the magnetiec
field are terminated at order and degree four, and the functions U
and V are expanded in spherical harmonics to the same order. The 48
coefficients of U and V are obtained by evaluating Eqs. (4.29) and (4.25)
at 612 grid points and applying a least-squares and matrix-inversion
technique.

Values of jo and 30 are computed from Eqs. (4.22) and (4.23). It
is convenient to represent these quantities by poloidal and toroidal
potentials, wherein*

~

ir X VTX - VTw (4.26)

—>
v
o]

and

(o0 4
"

ir x Vok = V.1 (4.27)

The additional numerical step required to obtain the functions ¢, X, «,
and T from U and V is a cumbersome but essential part of the process,
since the introduction of the intermediate functions U and V is precisely

the means by which singularities have been eliminated.

%
These new definitions are related to Egs. (2.14) through (2.17) by:
=y, ¥ = 3ufor (V%u = 0 at core surface), k = (4n)'1(v%s + BZS/BrZ), and

>
t

v

-
i

- (4ﬂ)—1 dT/3r (V;T = 0 at core surface).
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5. DISCUSSION QOF RESULTS

Initial results obtained from the variational principle, Eq. (4.13),
gave rather small values of the zonal flow velocity (the longitude-
independent part of x), including a westward drift term of
about .005°/yr. Also, the fit to the secular change field was
poor for wvalues of Em greater than about one.

This result was apparently due to the unnecessarily severe restriction
imposed on the zonal flow velocity by the form of the variational

principle. One can show that zonal flow terms, given by

>z

¥ = ir x vy x| NSOV (5.1)
n=1

have no effect on the fluid constraint, Eq. (4.2). Therefore one can
obtain greater freedom in satisfying the induction equation (fitting
secular—-change data) by altering the side condition of the variational
prineiple, Eq. (4.12), so that the integral of |$0 - ;le is constrained
rather than Izélz. This change leaves Eqs. (4.23) and (4.24) unaltered,
but adds 32 to the right side of Eq. (4.22) so that

- >z
v,o=v + BrVTU + cos 8 VTV (5.2)

It also adds terms with the additional (not entirely independent)
unknowns A; to Eq. (4.25). The results in this paper were
obtained with these modified equations.

With the modified equations we obtained a better fit to the
secular—change data and reasonable values of zonal velocity. Table 1
shows the derived secular-change coefficients for several values of im,
"together with original data of Cain (1967) for epoch 1960 and also
the comparable results obtained by our previous method (Kahle, Vestine,
and Ball, 1967). The fit is acceptable at Em = 1.2, with all coefficients
having the correct sign and an r.m.s. error of only 13 percent. As Rm is in-
creased, the fit declines only gradually for most coefficients, although

a few -— notably ﬁi -~ deteriorate much more rapidly. The tendency for
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coefficients of higher order to be represented somewhat better than
those of lower order is due, at least in part, to the fact that the
numerical fit was made at the core surface, where higher-order terms
are considerably amplified.

The values of westward drift velocity (A;) obtained with the modi-
fied equations all lie in the narrow range .12 to .15°/yr. (.13°/yr
- equals .025 cm/sec or 7.9 km/yr linear velecity at the equator on the
core surface.) This is closer to the values normally found; in
particular,’it agrees well with the estimated range .13 * .3°/yr
calculated by Richmond [1968] by a very different method. Furthermore,
in contrast to our previous method, the value obtained by our new
method appears to be relatively dinsensitive to slight changes in
the data, such as order and degree of truncation.

Contour maps of the functions ¥, X, kK, and T, which characterize
30 and 30, are shown in Figs. 2 through 4 for several values of §m.
Coefficients of the spherical harmonic expansions for these functions,

defined by the general form

4 n
p =b) 7} P™(0) (am cos mA + B™ sin mg
n=1 m=1 " n n

are given in Tables 2 and 3. Figure 2 shows { (the poloidal part of the
velocity) for ﬁm = 1.2, 4.3, and 20, plus the corresponding result from
our previous method, denoted by Rm = =, . The patterns show a small
change in form and a gradual increase in intensity as Rm increases. The
Rm = 20 case clearly resembles the old Rm = o case, which is interesting
because the latter was obtained with no fluid-dynamic constraint.
Contours of the toroidal velocity represented by the stream function yx
~— minus the uniform westward drift term A; cos 6 -— are shown in Fig. 3
for the same four cases. Again the form and intensity change only
gradually as ﬁm is increased, but here the patterns do not tend to

converge toward the old ﬁm = o result -~ at least up to Rm = 20. The ﬁm

oo

pattern shows a much greater intensity (note the different contour interval)

and a different pattern of flow, although in some of the more intense
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Fig. 2a Fig. 2b

s ‘>f§(’7';
e
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. —"7
) w0 20 [ 0 2 10 E ) 20 0 ©
¥ em=20 (wTeavaL: 50x109) ¥ ‘m=co (IMTERWAL: 50 %104)
Fig. 2c Fig. 2d

Contours of velocity potential § (3 = -Vg¥) for poloidal com-

ponent of flow, magnetic Reynolds numbers; Rm = 1.2, 4.3, 20, and

case of Rm = ®» derived by previous method (Kahle, Vestine, and

Ball, 1967).

Contour intervals are 50 x 104 cm2/sec. Positive values are

shown as solid lines (—), negative values by dashed lines (---),

and zero contours by heavy solid lines (=), Velocity vectors

are added to Rm = 4 case for clarity.

’
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Contours of stream function ¥ (;; = ir X Vx) for toroidal com-
ponent of flow, for magnetic Reynolds numbers, Rm = 1.2, 4.3, 20,
and ©. Westward drift term is not included; i.e., contours shown
are x' = x - A?_ cos § . Contour intervals are in cmz/sec. Arrows

are added to denote direction of flow,
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Contours of current functions T (poloidal current) and «

(toroidal current) (3 =i

each case (given in units of amp/m or 1073

X Vg - V.7

T

abamp /cm) .

K contours

)f Contour intervals differ for

do not include uniform zonal flow; i.e., only k - a: cos § is shown.
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regions (South Africa and South America) the flows are still similarly
directed. Consideration of the coefficients in Table 2 indicates that
higher-order harmonics are much more dominant in y for the Em =
solution, a circumstance which is probably related to the singularity
discussed in Section 2.

Figure 4 shows the poloidal and toroidal parts of the current,

T and Kk, respectively, for the two cases Em = 1.2 and 4.3. (Of course
there are no currents in the Rm = o case.) For these quantities, the
magnitudes vary nearly inversely with Rm, but the patterns again tend
to retain a similar form, especially k. Coefficients of the spherical
harmonic expansion of 1 and k are given in Table 3. 1t begins to change
more rapidly as ﬁm decreases to a value of one and less. Above a value
of one, the pattern is predominantly one of current upflow at both
poles and downflow in a belt around the equator.

To the extent that they have physical validity, the surface current
patterns give one some information about the magnetic fields deeper in
the core —-- specifically, about the rate of change with depth. The 1
field relates to diffusion of the toroidal magnetic field [TE—(An)—lBT/ar].
(T is assumed to be zero at the surface.) The T patterns shown
in Fig. 4 indicate a toroidal magnetic field that increases with
depth and is predominantly of the Tg type [i.e., varying like the
spherical harmonic Pg(e)] —~ directed eastward in the northern hemisphere
and westward in the southern hemisphere. Such a field is postulated
in several dynamo theories (Bullard 1949; Bullard and Gellman, 1954;
Parker, 1955; Elsasser, 1956).

The « function is related to diffusion of the poloidal magnetic field,

which results from both radial and horizontal gradients [K5(4ﬂ)_l(V%S + BZS/Brz)].
The horizontal gradients are presumed known from surface data, but

since we have included spherical harmonics only to order four, such
derivatives can produce only diffusion corresponding to im of the
order 102 or more. Hence the value of « is mostly determined by

the unknown vertical derivatives for the low values of Em under
consideration. The calculated coefficients of x are roughly inversely
proportional to ﬁm for larger values, but some coefficients tend

to level off to a constant value as ﬁm approaches one. For example,

the axial dipole term approaches 2.7 x 10—8 abamp/cm2 near ﬁm =1 (see

Table 3). This value implies that the dipole term decreases with depth
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with a scale length of 430 km, which is comparable with the value

inferred in Section 2 from our previous theory. It accounts for

a diffusive decay of 13.3 y/yr, or 95 percent of the observed secular
change of the axial dipole component of the magnetic field at the

earth's surface. Contour maps of « for two cases are shown inkFig.

4. 1In Table 3 we also show the equivalent k corresponding to the error

in secular change found by our previous method. This k field resembles
the presently derived wvalues to a striking degree, especially for ﬁm = 4.3,
which tends to reinforce the idea that this diffusion is necessary to
explain the observed secular change.

In summary, we have obtained a family of particular solutions for
the velocity and current fields near the surface of the core. These
solutions -— in terms of finite spherical-harmonic expansions -- tend
to satisfy the original equations more closely as the magnetic Reynolds
number is reduced. The r.m.s. fit to the secular change field is within
13 percent at ﬁm = 1.2, and is still within 33 percent at ﬁm = 4,3,

No particular value of Rm can be singled out as a clear turning point

to indicate a preferred choice within this range. Fortunately, the
velocity field does not change much over this range of ﬁm, so that it is
fairly well determined. The corresponding surface currents are also
roughly determined in form, but much less well in magnitude. Both the
form and magnitude of the currents are physically reasonable for values
of ﬁm of the order of one or larger.

The particular family of solutions was obtained by adding a plausible
fluid-dynamic constraint to the hydromagnetic inducdiion equation and
imposing an additional variational condition. The wvariational condition
guarantees, essentially, that the velocity and current fields will
(1) be nonsingular and (2) will have a fixed ratio of r.m.s. velocity
and current (i.e. ﬁm). The condition does not guarantee that such a
solution exists, and indeed the results indicate that only for suf-
ficiently small Rm can one satisfy the equations to a desired degree of
approximation. (The ability to satisfy the equations may also depend on
the completeness of the finite spherical-harmonic representations, but
numerical experiments indicated that this was not the primary source of
error in fitting secular change.)

While this variational principle is rather arbitrary, it does
appear to be the simplest such condition which achieves the desired

result of nonsingularity. The principle, Eq. (4.13), as well as its modified
form, contains both 30 and'_\;o quadratically, with constant coefficients,
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and without their derivatives. If positive powers of Br are included,
the resulting Euler-Lagrange equations are not manifestly nonsingular.
For example, if one were to minimize the integral of the work done by
the fluid against electromagnetic forces near the surfaces of the core,
> -> > ~ > >

v, (Jo x B) = Brir J (vO x Jo), then the resulting equations for

30 and 30 would have the forms (analogous to Eqs. 4.22 and 4.23)

-~

VTK/Br - ir X VTL

>
v
0

G
it

oir x VTK + (Zon cos 6)1r X VTL/Br

which are singular at Br = (,

It would be interesting to investigate solutions obtained by
imposing alternative side conditions based on other physically reasonable
assumptions. For example, one such physical condition might be based
on the fact that the electric potential at the core surface is directly
related to the currents which flow in the mantle, and therefore to
the core/mantle torque coupling. Another possibility might be to
alter the fluid dynamic constraint to take account of gravitational
stresses resulting from deformations of the core/mantle interface
as inferred from other geophysical considerations (heat flow, gravity
anomalies, etc.) Such alternative approaches would cf course have
to also lead to nonsingular velocity fields and reasonable representations
of the observable data.

We have found a plausible solution which satisfactorily reproduces
the secular change. While it has not been proven to be unique,
it is satisfying to note the close similarity with the ¢ part of
the previous ﬁm = o golution, which was derived with fewer conditions.
The chief difference appears to be that the addition of diffusion has
made it possible to satisfy the induction equation with a less complex
x field.

It should be noted that the present numerical method does not allow
us to use the data to best advantage, since evaluation of the fields at

the core overemphasizes the poorly known higher-order components
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of Br and ﬁr' A matrix form of the induction equation, such as that
given by Roberts and Scott, would enable one to utilize better statisti-
cal weighting in performing the least-squares fit. The additional
complexity this would have necessitated did not seem warranted for the
present purpose, which was to study the effect of a particular constraint

on the system.
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APPENDIX

ANALYSIS OF BOUNDARY LAYER

We seek an approximate solution of Eq. (3.5) in the boundary
layer with the assumption that the scale length for horizontal variations
is much larger than the vertical scale length, or boundary-layer thick-
ness.

It is convenient to separate each of the dynamical variables into
a mainstream component (denoted by subscript M), which is assumed to
have negligible variation in the boundary layer, and.a boundary-layer
component (denoted by subscript B), which is assumed to vanish outside

the boundary layer.

B=3_+3

T M B

v=V +V (A.1)
v = M B .
=3 +3

"M B,eth

The theory may be pursued in a fbrmal way by expanding the equations
in powers of the boundary-layer thickness, §. We shall discuss only the
lowest order, in which horizontal gradients are neglected relative to
vertical gradients. Furthermore, we shall assume a priori that the
absolute magnitude of the thickness is sufficiently siuall that the
finite boundary current, jB’ produces a negligible change in magnetic

field; i.e., E

B is assumed to be zero since

‘%BI ~§ |curl ﬁBl =6 ‘jBl/(An) a0

This approximation will be verified a posteriori.

Since the B variables wvanish outside the boundary layer, the M
variables must satisfy the equations individually in the main stream.
Furthermore, the assumed slow vertical variation implies that the

viscous term is negligible. Hence in the mainstream Eq. (3.5) becomes



20 x Uy = -ve, + 3, x B /o - evo (A.3)

By continuation, this must also hold in the boundary layer, so sub-

tracting it from the original form of Eq. (3.5) gives

> > > > 2
= =V
20 x VB P_+J XBM/po + uv

5 -
B B VB (A.4)

By a similar process, one separates Eq. (2.1) into

> -+ > >
JM =g [-V@M - BAM/at + VM X BM] (A.5)
and
> . > >
JB =0 [—V%B + VB X BM] (A.6)

where the continuity of B has been invoked to neglect aKB/at.

At the core/mantle interface (surface S, in Fig. 1), one has the

boundary condition !

vy 2V F Uy =0 (a.7)
and if mantle currents‘are neglected,

J . =3 + J = 0 (A.8)

rl Mrl Brl

The boundary-layer components of velocity and current must
individually satisfy the solenoidal condition

vy = 7% () + V¥ =0 (A.9)
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and similarly,
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avB1"=-3v -,V
or r Br T BT
aJBr - _ 2 JBr -y -3
or r T BT

(A.10)

(A.11)

Since these conditions must be satisfied throughout the boundary

layer, it is clear that the vertical (radial) components of ﬁﬁ and J

must be of the order

and we therefore neglect these vertical components.

Vg | ~ (671 [V,

|9, | ~ (/L) gyl

B

(A.12)

(A.13)

Eqs. (A.7) and

(A.8) then imply that the mainstream vertical components are also

negligible at r =

b and hence also at the lower boundary r~b - § (surface

SO in Fig. 1). These are the only boundary conditions which constrain

the mainstream solutions.

Using the approximations just derived, one can write the vertical

components of Eqs.

- 20 sin 6 V = =

BA

and

{(A.4) and (A.6) as

0P, | BZVBr
5t T UgeBun = JpalBug)/Po v o2
s . V. B, -V B

T Botn ~ VBaBwmo

(A.14)

(A.15)



42

Eq. (A.15) implies that the horizontal gradient of ¢B should be
negligible, and Eq. (A.14) implies the same about PB’ provided that
we assume the kinematic wviscosity v is of order 962. The horizontal

components of Eqs. (A.4) and (A.6) may then be written

2>
~ ~ ¢ n R oV
2@ x V)= 20 cos B(L.V. - 1.V.) = (B fp )i, Jor = 1.0 ) + v —o
B’T "~ A'BO 6" BA Mr/ Po’ YT BA A" BO )
(A.16)
and
> > > N "
JBT = o(VB X BM)T = GBMr(levBA 1AVB6) (A.17)
Elimination of J... gi
imination o gy &ives
2
_Yo'me _ v 2 Vme (A.18)
B cos 6 20 cos 6 2 '
or
and
2
v o= Yo' B) v * VB2 (A.19)
BO cos 0 20 cos © 2 '
or
where
oBlir
Y, = 2990 (A.20)

Ignoring the horizontal dependence (6 and 1), we may obtain the
fundamental modes by considering the radial mode

>

Vg = u(8,1) exp (ikr) (A.21)
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Eq. (A.18) yields the dispersion relation

2 kzv 2
cos 6 + Yo + 20 =0 (A.22)
The allowed solution of this is
k = ko - i/8 (A.23)

where

ko = JfQfv £(8,))
§ = /v/Q f(e,x)/lcos 6,

£(6,1) E\/i A /Yz + cosze

Using this eigenvalue, one obtains the solution of Eqs. (A.18) and
(A.19) as

i?B = —exp[(r-b) /6] {ﬁT(e,A)cos[ko(b—r)] - ﬁg—z—g—' i GT(E),A)sin [k_(b-r) ]%

(A.24)

where ET(G,A) is a transverse vector, which is determined by the boundary

condition (A.7) to be
U, (8,1) = V. (b,6,A) (A.25)
T M
We can now estimate the variation in the tangential magnetic field,

ﬁT’ across the boundary layer in terms of the current jBT obtained
from Eqs. (A.17) and (A.24):



by

b—€ -~ >

~ . 41088 k 8§ cos 81 xau
B (b) - B (b-£)=A B, = —4n Ji x Jar ——L_ (_u" + -2 r T)
! 148 )

r ( 2,2 T jcos 6]

(A.26)
where € > §. In order of magnitude,

8B . 3
%,_TL“' 4r o 6 |uT}~4 x 10 (A.27)

where we have made the pessimistic assumption that v ~ 103: so that
§~4 x 1O3cm. Near the equator we would get & ~ 105cm, so the ratio .
increases to about 10”1 at worst. Thus the original assumption of
continuity of § appears reasonable. '

Finally, we may recombine the velocities into the single solution

[letting %ﬁm(b,e,A)gz ﬁMT(r,B,A) near the boundary layer]

v(r,0,1) = irvr(r,e,x) + v*m(f,e,x) {1 - exp[(r-b)/s] cos[ko(b—r)]}

+ ;r x ¥ 0 (r,0,1) expl(x-b)/6) sin[ko<b-r)3(T_§°o§ gl)

(A.28)
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